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Abstract
The red swamp crayfish Procambarus clarkii is an invasive alien species spreading worldwide. The sterile male release technique
(SMRT) is among the methods used to contrast the growth of P. clarkii populations within invaded areas. In this study males
underwent X-ray sterilisation with a dose of 40 Gy and their immunocompetence was analysed in comparison to untreated
animals to ascertain whether radiation can affect welfare parameters other than reproductive organs. The present research
investigated the immune function in P. clarkii males in term of (1) morphological haemocyte characterisation by transmission
electron microscopy to identify the main phagocyting haemocyte after in vivo artificial non-self challenge with latex beads; (2)
total and differential haemocyte counts; and (3) basal and total phenoloxidase activities as components of the humoral defence.
Three types of circulating haemocytes were characterised via transmission electron microscopy: hyaline, semigranular and
granular haemocytes. The ultrastructural features of haemocyte granules allowed the characterisation of a fourth type of
haemocyte, the medium granule haemocyte. In vivo artificial non-self-challenge with latex beads identified the semigranular
haemocytes as primarily involved in phagocyting activity. Circulating haemocytes of males irradiated with a dose of 40 Gy, after
20 days, showed a significantly lower diameter in the granules of hyaline and semigranular haemocytes, but no other evident
ultrastructural alterations in comparison with un-irradiated animals were found. Irradiatedmales showed a significant decrease of
about 80% of circulating haemocytes and an increase in frequency of semigranular and granular haemocytes. No significant
differences in basal and total phenoloxidase activity were recorded and this could, in part, explain the good survival level of
irradiated males despite the drastic decline of the haemocyte number. This study represents the basis to appraise whether SMRT
affects important functions, such as those of the immune system, in addition to altering the gonad tissue.
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Introduction

Procambarus clarkii (Girard, 1852) is an invasive alien
species spread worldwide with significant economic and
ecologic impact. For this reason, a wide number of
previous studies have investigated its life cycle, physiol-
ogy and reproductive behaviour to limit its diffusion in
freshwater environments (Aquiloni & Gherardi 2010;
Peruzza et al. 2015; Souty-Grosset et al. 2016;
Yazicioglu et al. 2016). The sterile male release techni-
que (SMRT) has been chosen in Friuli Venezia Giulia
region (Italy) as part of the strategy to control the red
swamp crayfish local populations. The SMRT consists
in the release into the environment of sterile males that

are sexually active and able to compete with untreated
males for mating partners. For SMRT, it is thus man-
datory that treated animals lack physiological and beha-
vioural damages leading to suppression of
competitiveness towards wild individuals. Recently, the
gonad damage induced by ionising radiation was
described in P. clarkiimales (Piazza et al. 2015), but no
data are available on their welfare. Immunocompetence
has been chosen to assess the status of health of males
after radiation. To evaluate the immune function in P.
clarkii, the following parameters were considered: (1)
morphology of haemocytes, as characterised by trans-
mission electron microscopy, and to identify the main
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phagocyting haemocyte after in vivo artificial non-self
challenge with latex beads; (2) total and differential
haemocyte counts; and (3) activity of basal and total
phenoloxidase as a component of the humoral defence.

Invertebrates rely on innate defence mechanisms,
involving cellular and humoral responses, for the
recognition of invaders and their immobilisation.
Three classes of haemocytes have been commonly
described in crustaceans, including hyaline (HH),
semigranular (SH) and granular haemocytes (GH)
(Martin & Graves 1985; Hose et al. 1990; Johansson
et al. 2000; Battison et al. 2003; Ding et al. 2012). In
the crayfish (Pontastacus) leptodactylus, ultrastructural
features allowed the characterisation of a fourth class
of haemocytes containing granules with an inter-
mediate diameter with respect to those of SH and
GH (Giulianini et al. 2007). These different classes
of haemocytes perform a series of coordinated activ-
ities integrating cellular and humoral responses, such
as phagocytosis, encapsulation, early non-self recog-
nition, melanisation, coagulation, prophenoloxidase-
activating system, antimicrobial peptides and cyto-
toxicity (Martin & Graves 1985; Hose et al. 1990;
Johansson et al. 2000; Battison et al. 2003; Vazquez
et al. 2009; Lin & Soderhall 2011). Humoral
defences include the production of antimicrobial
peptides (AMPs), reactive intermediates of oxygen
or nitrogen, and the prophenoloxidase enzymatic
cascade (proPO) regulating melanisation of haemo-
lymph (Yang et al. 2013).

In the present work, we compared the immune
parameters measured in a control group with those
of red swamp crayfish irradiated with a dose of 40 Gy
to evaluate the effects of X-rays on the immune
response of this species.

Material and methods

Animal collection and housing conditions

Adult crayfish (40.7 ± 0.5 mm, n = 70) were collected
in April–July 2014 from Casette Lake (Pordenone,
Friuli Venezia Giulia, Italy) during the reproductive
season. Once in the laboratory, they were kept at a
density of 15 ind./m2 in plastic tanks
(80 × 60 × 60 cm) containing 48 L of tap water and
halved terracotta pots as shelters. For the entire period
of the study, experimental individuals weremaintained
under a 12:12 h light/dark cycle, at room temperature
(20°C) and fed ad libitum with crayfish pellets (Sera
granular, Heisenberg, Germany). Water was changed
twice a week.

The experiments comply with the current laws of
Italy, the country in which they were done. No spe-
cific permits are required for studies that do not

involve endangered or protected species.
Individuals were maintained in appropriate labora-
tory conditions to guarantee their welfare and
responsiveness. After the experiments were com-
pleted, crayfish were sacrificed by hypothermia.

Irradiation of males

Twenty males were irradiated with a dose of 40 Gy
in accordance with Piazza et al. (2015). The irradia-
tion was carried out on 12 August 2016 at the
Pordenone Hospital (Pordenone, Italy). During the
irradiation, crayfish were maintained in a plastic tank
(17 × 29 × 36 cm) with 10 L of tap water and
covered with a sheet of Plexiglas (thickness: 2 cm).
A clinical linear accelerator (Siemens Mevatron
MX2) with a 4-MeV electron beam was used to
generate X-rays yielding 2 Gy/min at 100 cm from
the target (40 × 30 cm), so that the treatment doses
were achieved with 20 min of exposure. After the
treatment, crayfish were kept isolated for 2 weeks in
individual aquaria (25 × 20 × 20 cm), each contain-
ing a shelter (a halved terracotta pot), and were
observed daily to assess possible alterations in their
general activity. Twenty males were subjected to the
same manipulation, but not irradiated, serving as the
control group. The haemolymph was collected
20 days after the irradiation for ultrastructural and
enzymatic analyses. Twenty days represents an inter-
mediate time point between 10 days after irradiation,
where initial structural damages were noticed, and
30 days after irradiation, where extended cellular and
structural damage was observed (Piazza et al. 2015).

In vivo phagocytosis assay

To assess the ability of crayfish haemocytes to pha-
gocytise foreign material, we used a 26-gauge needle
to inject 100 µL of carboxylate-modified polystyrene
latex beads (0.9 µm in diameter, aqueous suspen-
sion, 10% solids content, Sigma) diluted 1:1 in
0.15 M sterile phosphate buffered saline (PBS,
Sigma) into the pericardial sinus of the crayfish (LB
group). A second group was injected with 100 µL of
sterile PBS (PBS group). Untreated animals were
used as the control (CTRL group). After 2 h,
200 µL of haemolymph was withdrawn from the
pericardial sinus of each animal into a sterile plastic
1-mL syringe (26-gauge needle), filled with an equal
volume of fixative (2.5% glutaraldehyde, 0.8% para-
formaldehyde and 7.5% saturated aqueous solution
of picric acid in 0.15 M PBS, pH 7.4, with 1.5%
sucrose). After a fixation of 10 min, haemocytes were
pelleted in 1 mL of fixative by 14,000 rpm centrifu-
gation for 10 min at 20°C. The resulting pellets were
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then washed in 0.15 M PBS, pH 7.4, and post-fixed
in 1% osmium tetroxide in the same buffer, serially
dehydrated in ethanol and embedded, via propylene
oxide, in Embed812/Araldite (Electron Microscopy
Sciences, Fort Washington, PA).

For transmission electron microscopy, ultra-thin
sections (120 nm) were cut with a Leica Ultracut
UTC Ultratome, stained with uranyl acetate and
lead citrate, and examined with a Philips EM 208
electron microscope at 100 kV; images were
acquired with a Quemesa bottom-mounted TEM
CCD Camera (Olympus, Germany) provided with
an iTEM imaging platform and saved in TIF format.

For light microscopy, semi-thin sections (2 µm)
were stained with toluidine blue and examined with
an Olympus BX50; images were acquired with a
digital Olympus E-P1 camera. The analysis of the
images was performed with the open-source program
ImageJ 1.50i (Schneider et al. 2012). Circularity of
haemocytes granules was calculated with the same
ImageJ shape descriptor where a circularity value of
1.0 indicates a perfect circle. As the value approaches
0.0, it indicates an increasingly elongated polygon.

Haemocyte counts

Total and differential haemocyte counts were per-
formed for specimens from CTRL, PBS, LB and irra-
diated groups. For total haemocyte counts (THCs),
50 µL of haemolymph was collected from each animal
and haemocytes were counted using a Bürker’s hae-
mocytometer. For differential haemocyte counts
(DHCs), haemolymph was processed as described
above for light and electron microscopy. Three differ-
ential cell counts were made by two different operators
from semi-thin (2 µm) transverse sections of the full
pellet thickness stained with toluidine blue. From 88 to
601 haemocytes were scored from three slides per pel-
let. Neither aggregate latex beads nor aggregate cells
were found in the pellets. Cells with ambiguous fea-
tures were scored as not classified (NC).

Basal and total plasmatic phenoloxidase activities

Haemolymph withdrawal was performed through the
abdominal haemolymph sinuses. Plasma was isolated
from haemocytes through centrifugation.
Phenoloxidase (PO) activity was monitored spectro-
photometrically as the formation of dopachrome
from 3, 4-dihydroxy-L-phenylalanine (L-DOPA,
Sigma-Aldrich). For the determination of basal PO,
20 μL of plasma was taken and mixed with 180 μL of
L-DOPA (3 mg/mL in PBS) in a microtiter plate.
For the determination of total plasmatic PO (pPO)
enzyme activity, 30 μL of plasma was added to 30 μL

of methanol that chemically activates PO from its
inactive zymogen, prophenoloxidase (proPO) (Yang
et al. 2013). The haemolymph–methanol mixture
was incubated for 5 min at room temperature and
20 μL was mixed with 180 μL of L-DOPA (3 mg/mL
in PBS) in a microtiter plate. The basal and total
phenoloxidase enzyme activity at 20°C was recorded
at 492 nm for 30 min at 5-min intervals using a plate
reader (Sirio S, SEAC). All samples were assayed in
duplicate. The enzyme activity was measured as the
slope (absorbance vs time) of the reaction curve
during the linear phase of the reaction. The slope
of the reaction curve at Vmax was plotted as absor-
bance per μL of haemolymph per min. PO assay was
performed for CTRL (n = 11), LB (n = 9), and
irradiated (n = 10) groups.

Statistical analysis

Statistical analyses were performed using R version
3.4.1 software (R Core Team 2016). Differences
among the experimental groups in haemolymph
plasmatic PO activity, THCs, DHCs and granule
shape descriptors were assessed by nonparametric
statistics, i.e. Kruskal–Wallis rank sum test followed
by post-hoc Wilcoxon rank sum test pairwise com-
parisons with Bonferroni correction, since the null
hypothesis of the Bartlett test for the homogeneity of
variance could not be rejected. The box-and-whis-
kers plots were drawn with the boxplot command.
All values are reported as mean ± standard error
(SE) in the text. Differences were considered signifi-
cant at p-value ≤ 0.05.

Results

Haemocyte types and morphology

Three morphological types of circulating cells were
identified in sections of fixed pellet by transmission
electron microscopy: hyaline haemocytes (HH;
Figures 1(a), and 4(a)), semigranular haemocytes
(SH; Figures 1(c), 2(a,b) and 4(b)) and granular
haemocytes (GH; Figures 1(d–f) and 4(c)).
HHs are the smallest circulating haemocytes, with

an oval/irregular profile (Figure 1(a,b)), high
nucleus/cell surface ratio and a mean diameter of
9.89 ± 0.65 μm (n = 10).
The nucleus, euchromatic and sometimes lobated,

is located in a central position and presents large
chromatin lumps. In the cytoplasm, rough endoplas-
mic reticulum, mitochondria and small electron-
dense vesicles with a mean diameter of 0.35 ± 0.02
μm (n = 20) are present (Figure 4(a)).
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SHs present an elongated profile of
12.38 ± 0.92 μm in length and 6.22 ± 0.30 μm
in width (n = 10) (Figures 1(c) and 2(a, b)).

The large nucleus is located in a central posi-
tion with an irregular, sometimes lobated and
polymorphic profile. The cytoplasm presents a

well-developed rough endoplasmic reticulum,
Golgi complex and elongated mitochondria with
tabular cristae (Figure 2(b)). Homogeneous elec-
tro-dense granules with a mean diameter of
0.74 ± 0.03 μm (n = 20) are present
(Figure 3(a)).

Figure 1. Transmission electron microscopy of Procambarus clarkii haemocytes, CTRL group. (a,b) Hyaline haemocytes (HH) showing a
high nucleus/cell ratio. (c) Granular (GH) and semigranular haemocytes (SH). Transversal (d,e) and longitudinal (f) section of granular
haemocytes (GH). Arrows: granules; ly: lysosome; m: mithocondria; n: nucleus; rer: rough endoplasmic reticulum. Scale bars: a, b, d–f =
2 µm; c = 5 µm.

X-ray on P. clarkii 29



GHs present a circular to spindle-shaped profile
with a mean diameter of 12.24 ± 0.81 μm

(n = 10). The nucleoplasm is finely dispersed
with some chromatin lumps mainly located

Figure 2. Transmission electron microscopy of Procambarus clarkii haemocytes, latex beads group. (a,b) semigranular haemocyte (SH). (c,d)
medium granules haemocyte (MH). (e,f) Semigranular haemocyte (SH) involved in phagocytic activity after in vivo artificial non-self-
challenge. A large number of latex beads (asterisks) are present in the cytoplasm included into the phagosomes. (g) Detail of semigranular
haemocytes (SHs) showing the latex bead phagocytosis at the membrane level. Many granules appear to be fusing with phagosomes
(arrowheads). n: nucleus. Scale bars: b = 1 µm; a, c–f = 2 µm; g = 500 nm.
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beneath the nuclear envelope. In the cytoplasm,
some late endosomes are present. These haemo-
cytes are characterised by large, electron-dense,
amorphous, membrane-enclosed granules showing
a round to oval or lentil-like granule profile with a
mean diameter of 1.57 ± 0.09 μm (n = 20;
Figure 3(a)).

Measures of granule diameters have highlighted a
fourth type of haemocytes not detectable in tradi-
tional unfixed preparations observed with
Nomarsky’s contrast, while it is easily appreciable
in ultrathin sections of pelleted haemocytes
(Figures 2(d) and 4(c,d)). This medium granule
haemocyte (MH) has variable electron-dense struc-
tured granules with a round profile and a mean
diameter of 0.99 ± 0.05 μm (n = 20) in the cyto-
plasm, that is significantly different that of the gran-
ules of other haemocyte types (Wilcoxon rank sum
test, p ≤ 0.003; Figure 3(a)). The MHs have a round
profile, about 13.16 ± 0.96 μm (n = 10) in diameter.
The euchromatic nucleus, mainly located in an
eccentric position, presents a circular/irregular pro-
file. The circular function highlights that structured
granules of MH exhibit the significantly greatest cir-
cularity compared to granules of other haemocyte
categories (0.91 ± 0.16, n = 20; Wilcoxon rank
sum test, p ≤ 0.0107; Figure 3(b)). MH from an
irradiated male exhibits both typical structured gran-
ules and large, electron-dense, structureless, GH-
like granules (Figure 4(e)).

Circulating haemocytes of males irradiated with
a dose of 40 Gy show significantly lower diameters
in the granules of HH and SH in comparison with
diameters of granules of the same haemocyte types
of un-irradiated males (0.17 ± 0.01, n = 20 and

0.52 ± 0.03, n = 20; Wilcoxon rank sum test,
p ≤ 0.0001; Figure 3). The granules of HH exhibit
a significantly greater circularity (0.85 ± 0.01,
n = 20) in comparison with HH granules of un-
irradiated males (0.65 ± 0.02, n = 20 and
0.52 ± 0.03, n = 20; Wilcoxon rank sum test,
p = 3.92e-07; Figure 3). No other evident ultra-
structural damages in comparison with un-irra-
diated animals were found (Figure 4(a–d)).

Haemocyte phagocytic responses

SHs were able to phagocytise latex beads 2 h after the
injection (Figure 2(e–g)). We observed these haemo-
cytes with up to 10 phagocytised beads within the cyto-
plasm. Electro-dense granules fusing with a phagosome
are evident, demonstrating their role as primary lyso-
somes (Figure 2(g)).

Total and differential haemocyte counts

The THCs in CTRL, PBS, LB and irradiated males
(IRR) of P. clarkii are shown in Figure 5. In the
Irradiated animals, THCs are highly significantly lower
(432,857 ± 56,049 haemocytes/mL, n = 7) in compar-
ison with CTRL (2,000,454 ± 235,640 haemocytes/
mL, n = 11; Wilcoxon rank sum test, p = 0.003) and
the PBS-injected group (1,006,071 ± 184,413 haemo-
cytes/mL, n = 7; Wilcoxon rank sum test, p = 0.013),
but not with LB-challenged ones (1,105,312 ± 296,687
haemocytes/mL, n = 8; Wilcoxon rank sum test,
p = 0.251; Figure 5). No significant differences were
recorded in the other pairwise comparisons (Wilcoxon
rank sum test, p > 0.07).

Figure 3. Diameter (a) and circularity (b) of granules characterising the four types of haemocytes. CTRL: control group, HH: Hyaline
haemocytes, SH: semigranular haemocytes, MH: medium granule haemocytes, GH: granular haemocytes. IRR: irradiated group.

X-ray on P. clarkii 31



The DHCs show that HHs are the main haemocyte
type in haemolymph of CTRL (59.7 ± 4.9, n = 9), PBS
(65.8 ± 2.7, n = 6) and LB groups (67.6 ± 4.0, n = 6)
(Figure 6). Significantly lower HH percentages are
recorded in the IRR group (17.6 ± 5.2, n = 10) com-
pared with CTRL (Wilcoxon rank sum test,
p = 0.0048), PBS (Wilcoxon rank sum test,
p = 0.0119) and LB (Wilcoxon rank sum test,
p = 0.0119). SH percentages are significantly higher in
IRR (25.5 ± 5.0, n = 10), in CTRL (13.2 ± 3.0, n = 9)
and in PBS (9.9 ± 0.8, n = 6) compared to LB
(5.5 ± 0.8, n = 6; Wilcoxon rank sum test, p = 010
and p=0.046). The irradiated group shows significantly
higher GH percentages (48.6 ± 6.2, n = 10) in

comparison with CTRL (18.0 ± 2.1, n = 9; Wilcoxon
rank sum test, p = 0.0065), PBS (20.9 ± 3.2, n = 6;
Wilcoxon rank sum test, p = 0.04) and LB (21.9 ± 3.4,
n = 6; Wilcoxon rank sum test, p = 0.028). NC cells do
not present significant differences among groups
(Wilcoxon rank sum test, p ≥ 0.30).

Phenoloxidase (PO) activity

The results show no significant differences in basal
PO and total plasmatic PO activities among CTRL,
LB and IRR groups of P. clarkii males (Wilcoxon
rank sum test, p ≥ 0.05; Figure 7).

Figure 4. Transmission electron microscopy of Procambarus clarkii haemocytes 20 days after irradiation at a dose of 40 Gy. (a) Hyaline
haemocytes: HH, Hyaline haemocyte. (b) Semigranular haemocytes: SH, Semigranular haemocyte. (c) Granular haemocytes: GH, Granular
haemocyte. (d,e) Medium granule haemocytes: MH. (f) Detail of structured granules in MH, Medium granule haemocyte. (g) GH-like
granules, sg: structured granules. Scale bars: f = 1 µm; a, b, d, e = 2 µm; c = 5 µm.
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Discussion

In the present study three major types of circulating
haemocytes were identified by transmission electron
microscopy: HHs, SHs and GHs. The ultrastructural
features of P. clarkii haemocytes agree with those
already described for SH and GH. As regards HH,

Ding and colleagues (2012) described HHs with no
granules, but this was not observed in haemocyte
pellets from this study. Moreover, the ultrastructural
features of haemocyte granules allowed the character-
isation of a fourth type of haemocyte, MH, with elec-
tron-dense inhomogeneous granules with a round
profile and a mean diameter of 0.99 ± 0.05 μm, and
showing intermediate dimensions compared to gran-
ules of SH and GH. This type of haemocyte was
already described in the crayfish Astacus leptodactylus
(Giulianini et al. 2007). Due to the difficulties of
recognising this haemocyte type at light microscopy
level, MHs were not counted for the DHCs and
probably fell into the NC category. The occurrence
of an MH containing also GH-like granules suggests
that this haemocyte represents an immature stage of
the GH. The differences in the observed percentages
of haemocyte types of a previous study on the same
species (Ding et al. 2012) depend on (1) the different
categorisation of the haemocytes and (2) the different
methodology used for their characterisation, since we
counted them in semi-thin stained sections unlike the
cited authors who distinguished them by means of
phase contrast or bright-field light microscopy. For
instance, the high percentages of HHs of the present
work (59.7 ± 4.9) are more in accordance with those
recorded by the same methodology in A. leptodactylus

Figure 5. Total circulating haemocytes from control (CTRL),
PBS group (PBS), latex beads (LB) and irradiated (IRR) groups.

Figure 6. Differential haemocyte percentages in Procambarus clar-
kii male from control (CTRL), PBS group (PBS), latex beads
(LB) and irradiated (IRR) groups.

Figure 7. Basal (PO) and total plasmatic phenoloxidase (pPO)
activities in Procambarus clarkii males from control (CTRL),
latex beads (LB) and irradiated (IRR) groups measured as the
slope of the reaction curve at Vmax. The enzymatic activities were
recorded as absorbance units for µL of haemolymph per min (for
statistics see the text).
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(46.7 ± 4.9), rather than with those recorded in P.
clarkii with a different technique (16.3 ± 2.2;
Giulianini et al. 2007; Ding et al. 2012). Besides,
the present study identifies the SH as the haemocyte
type primarily involved in phagocytic activity after in
vivo artificial non-self challenge with latex beads, in
accordance with what was already described for A.
leptodactylus (Giulianini et al. 2007).

The literature documents a survival of males irra-
diated with a dose of 20 Gy, reared under laboratory
conditions, of at least 1 year (Aquiloni et al. 2009).
In the present study, only one male out of 20 died
during the experiment, indicating the very low mor-
tality rate of this species after X-ray irradiation of
40 Gy. The selected time point of 20 days represents
an intermediate point between 10 days after the
irradiation, where initial structural damage was
noticed, and 30 days after radiation, where extended
cellular and structural damage has been observed
(Piazza et al. 2015).

We found a significant decrease of about 80% of
circulating haemocytes and an increase in percen-
tage of SH and GH in males irradiated with a dose
of 40 Gy after 20 days. The considerable decrease
in circulating haemocytes is consistent with the
cytological damage to the gonads that was described
as progressive from the day of irradiation up to
30 days (Piazza et al. 2015). As pointed out by
some authors, in malacostracans the occurrence of
circulating haemocytes in division is an exceptional
phenomenon and it reflects the release, in the cir-
culation, of immature haemocytes or prohaemo-
cytes from haematopoietic sites (Bauchau 1981;
Roulston & Smith 2011). The lack of noticeable
ultrastructural damage induced by X-ray irradiation
on circulating haemocytes is consistent with the
finding that SH and GH are differentiated haemo-
cytes whilst HH are pro-stages for the two above
haemocyte lineages, as reported for Penaeus mono-
don (Van De Braak et al. 2002) and for Pacifastacus
leniusculus (Wu et al. 2008; Söderhäll 2016). In A.
leptodactylus ultrastructural features suggest that HH
is a relatively undifferentiated haemocyte type whilst
SH (“small granule haemocytes”) and GH (“large
granule containing haemocytes”) show features of
well-differentiated haemocyte types (Giulianini
et al. 2007). The DHCs of the present study
demonstrate that in the contest of a drastic reduc-
tion of total haemocytes in irradiated animals, the
percentages of SHs and GHs significantly increase,
in view of a collapse of the HH percentages that
normally represent the highest percentages of circu-
lating haemocytes, with means of more than 50%.
This finding could be explained by (1) the damaged
hematopoietic tissues not able to release new HH

after irradiation and (2) the former HH, at the time
of irradiation, progressively differentiating in the SH
and GH types. The fact that most of the males
show an apparently normal reactivity after 20 days
of irradiation could be explained by cellular protec-
tive mechanisms that compensate for cell loss. In
fact, with a dose of 4000 Roentgen (equivalent to
35.08 Gy), 60–75% of imaginal disc cells of
Drosophila melanogaster third-instar larvae died, but
the resulting adult flies were indistinguishable in
size from un-irradiated controls, indicating a repla-
cement of dead cells (Jaklevic & Su 2004).
Interestingly, the activity of PO and pPO is not
affected by ionising radiation after 20 days of the
treatment, and this could, in part, explain the good
survivorship of irradiated males that are able to face
immunological challenges by humoral activity. In a
recent study on the lepidopteran pest Spodoptera
litura, it was reported that radioresistance increased
in relation to the age of the insect (Sachdev et al.
2017), and the use of adult crayfish could explain
the unaltered PO and pPO pathways. It remains to
be seen how, and how long, animals are able to
offset the drastic haemocyte decline, and whether
this would preclude survival in the wild.
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